

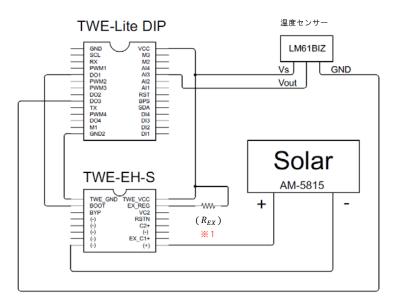
光の力で電波を飛ばす!

TWE-Lite シリーズ専用! エナジーハーベスト制御基板 TWE-EH-S

この度は、当社製品をお買い上げいただき誠にありがとうございます。

≪特徴≫

- TWE-Lite 又は TWE-Lite DIP(以下 TWE モジュール) と組み合わせて使用するエナジーハーベスト制御基板です。
- ソーラーパネルのエネルギーをコンデンサーに蓄電し、そのエネルギーを利用して、ごく短い間無線モジュールを動作させます。
- 余剰エネルギーを蓄電デバイス(電気二重層コンデンサー)へ充電する回路が内蔵されていますので、ソーラーパネルが発電しない夜間でも継続的に動作できます。
- 外部回路や追加抵抗により、様々なソーラーパネルを利用できます。


※ 推奨ソーラーパネルは、AM-5815(Panasonic)です。[最大出力電力 6mW(5.2V-1.1mA)] 推奨以外のソーラーパネルを接続する場合は、開放電圧 4V~6V、最大出力電力 300mW 以下を目安にします。

- 1 -

≪まずは動かしてみましょう!≫

簡易ワイヤレス温度計

送信側 回路例

% 1 推奨ソーラーパネル (AM-5815) を利用する場合、追加抵抗 R_{EX} は必要ありません。 抵抗 R_{EX} の決定方法は、2 ページ目の《利用可能なソーラーパネル》を参照してください。

≪使用上の注意≫

本評価基板は TWE シリーズ(TOCOS Wireless Engine) と共に使う事を前提としています。 これ以外を目的とする利用(ハードウェア、ソフトウェア、ならびに技術情報の転用)を 禁止します。

≪ソフトウェアのダウンロード≫

下記ページより最新のソフトウェアをダウンロードして、使用する TWE モジュールへ書き込みを行って下さい。

TOCOS-WIRELESS. COM

http://tocos-wireless.com/jp/products/TWE-EH-S/

≪利用可能なソーラーパネル≫

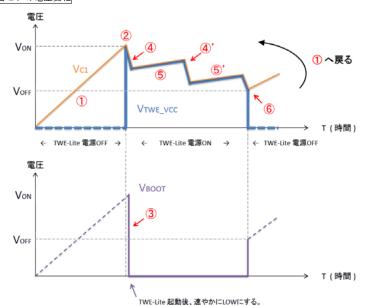
開放電圧 4V~6V、最大出力電力 300mW 以下を目安とします。

最大出力電力10mW以上のソーラーパネルを利用するには、追加抵抗R_{EX}をTWE_VCCとEX_REG間へ接続してください。過電圧や過電流による故障や発火を防ぎます。

※ 推奨ソーラーパネル(AM-5815)を利用する場合、追加抵抗 R_{EX} は必要ありません。 追加抵抗値(R_{EX})は下記の式で決まります。

追加抵抗値
$$R_{EX}\left[\Omega\right]$$
 $\leq \frac{11.5}{y- - \pi \lambda \nu \sigma} \times 1000$ 最大出力電力 $[mW]$

以下に目安を示します。


ソーラーパネルの最大出力電力 [mW]	追加抵抗 R _{EX} [Ω]						
10 以下	不要						
11~100	100 , 1/4W						
101~300	33 , 1/2W						

- 2 -

≪動作説明≫

- ① ソーラーパネルのエネルギーは、内蔵のコンデンサーC1(220uF)へ充電されます。
- ② C1 の電圧 (Vc1)が約 2. 9V (VoN)になると、TWE_VCC が GND と接続され、TWE モジュールが動作を開始します。
- ③ TWE モジュールは起動直後、すみやかに D01 (VB00T)を Low にします。
- ④ TWE モジュールは無線送信します。
- 5 無線送信後、TWE モジュールはスリープ状態になります。
- **4'5'**スリープ復帰後に無線送信をして、再びスリープする動作を繰り返します。
- ⑥ エネルギーの供給不足により電圧が約 2. OV (VOFF) を下回ると、TWE モジュールは動作を停止します。DO1 (VBOOT)の Low 状態が解除され、状態①へ戻ります。

各ピンの電圧変化

≪基板ピン配置≫

信号名	ピン番号		ピン番号	信号名
TWE_GND	1	THE GND THE VCC	16	TWE_VCC
BOOT	2	BOOT EX_REG	15	EX_REG
BYP	3	● BYP NC2 ●	14	VC2
(-)	4	RSTN ®	13	RSTN
(-)	5	(a) € (c) (c) (c)	12	C2+
(-)	6	€ Q°(-)	11	(-)
(-)	7	O EX.CI.	10	EX_C1+
(-)	8	0 0 3 (Att) 0 0	9	(+)

≪各ピンの説明≫

TWE GND

TWE モジュールの GND に接続します。

B00T

TWE モジュールの DO1 に接続します。 TWE モジュール起動後、速やかに LOW にします。 電圧条件は、TWE モジュールの電圧条件に従います。

BYP

TWE モジュールの DO2 に接続します。

Hi にすると、蓄電デバイスと TWE_VCC 間へ接続されているダイオードをバイパスし

蓄電デバイスが 2.3V の状態で TWE モジュールへ電源を供給すると、ダイオードの電 圧降下により TVE_VCC は約 2.0V になり動作を停止します。バイパスを行うと、蓄電 デバイスが約 2.0V まで TWE モジュールを動作できます。

電圧条件は、TWE モジュールの電圧条件に従います。

GND (-)

ソーラーパネル、蓄電デバイス、EX_C1 に追加したコンデンサーの(-)マイナス端子 を接続します。

• (+)


ソーラーパネルの+(プラス)端子を接続します。

5

≪夜も動くようにする!≫

・簡易ワイヤレス温度計 (余剰エネルギー充電回路有り)

送信側 回路例

※ 抵抗 R_{EX} の決定方法は、2ページ目の《利用可能なソーラーパネル》を参照してください。

7

EX_C1+

内蔵コンデンサーC1(220uF)の+端子に接続されています。

EX_C1+と GND (-) 間にコンデンサーを追加すると、内蔵コンデンサーC1 (220uF) と並列 に接続されて容量を大きくできます。

C1 のみでは無線モジュールの動作する時間が限られますが、ここにコンデンサーを 追加することで、動作時間を長くすることができます。

電圧範囲は0~3.6Vです。

C2+

C2+と GND (-) 間に余剰エネルギーを充電する蓄電デバイスを接続します。 電圧範囲は 0~3.6V です。

RSTN

TWE モジュールの動作状態を示します。 (Hi:TWE モジュール動作中、 Low:TWE モジュール停止中)

VC2

蓄電デバイスの充電状況をモニターする場合、TWE モジュールの All に接続します。 VC2 は、C2+の電圧を抵抗 2 個 $(10M\Omega)$ で分圧したピンです。 さらに、TWE モジュール の電圧測定を安定させるため VC2 と TWE GND 間に 0.1uF のコンデンサーが接続され ています。TWE モジュールの VC2 読み取り値を 2 倍すると、蓄電デバイスの電圧にな ります。

EX_REG

2ページ目の≪利用可能なソーラーパネル≫を参照してください。

TWE_VCC

TWE モジュールの VCC に接続します。

最新情報は TOCOS-WIRELESS. COM をご覧ください。

8